















# Building Earth Observation (EO) Capacity in the Philippines: Lessons from CopPhil

Carla Mae Arellano<sup>1,\*</sup>, Vanessa Streifeneder<sup>1</sup>, Dr. Zahra Dabiri<sup>1</sup>, Dr. Daniel Hölbling<sup>1</sup>, Prof. Dr. Stefan Lang¹, Dr. Peter Zeil¹, Eva-Maria Steinbacher¹

1 Department of Geoinformatics – Z\_GIS, Paris-Lodron University of Salzburg (PLUS), Austria

# OPERNICUS CopPhil Introduction

The National Copernicus Capacity Support Action Programme for the Philippines (CopPhil) is a flagship EU-ESA-PhilSA initiative under the Global Gateway Strategy, aimed at enhancing EO-based climate resilience, disaster risk reduction, and environmental management in the Philippines.

Our activities include infrastructure deployment, EO pilot services development, and a knowledge and skills transfer programme.



Ground Motion Monitoring Service

Land Cover, Forest, and Crop Monitoring Service

Benthic Habitat Monitoring Service

#### Highlights and Lessons Learned



11 courses

currently available in the training platform: CopPhil Digital Campus



16 sessions

held online and on-site in the Philippines (as of June 2025)



300+ participants the Philippines

from 67+ institutions in

- High overall satisfaction across all trainings!
- Co-creation ensures relevance: Needs-led design anchored in the local context
- Hands-on > lectures: Onsite and interactive sessions rated most effective
- Modularity helps progression = better uptake
- Ongoing support matters: Long-term EO training must be institutionalized (e.g., through PhilSA)

## Capacity Development Strategy

CopPhil's knowledge and skills transfer strategy was based on:

- EO/GI Maturity Assessment
- Stakeholder Skill Surveys
- Co-Creation Workshop (Oct 2024)



Identified gaps included:

- Limited advanced EO processing (e.g., InSAR, SDB)
- Limited programming/ML use in EO workflows
- Barriers in integrating EO into institutional decisionmaking
- Need for calibration/validation and big EO data management

These informed the training curriculum design based on Bloom's Taxonomy and EO4GEO Body of Knowledge.

3-stage training structure:

- 1. Fundamentals EO principles, intro to pilot services
- 2. Practicals walkthrough of the EO services workflows
- 3. Applications (Aug 2025) User-driven case studies



### Outlook

CopPhil offers a scalable model:

- Institutional embedding via PhilSA
- Balanced knowledge exchange (Europe ↔ Philippines)
- Clear progression from data to service to skills

Lessons applicable to other Global South countries looking to integrate Copernicus into their environmental monitoring.

References:

(EO services images) <u>https://copphil.philsa.gov.ph/</u>

(Bloom's Taxonomy) <u>Using Bloom's Taxonomy to Write Effective Learning Objectives</u>

(EO4GEO Body of Knowledge) <u>https://bok.eo4geo.eu/GIST</u>

(CopPhil D9): Arellano, C. M., Streifeneder, V., Steinbacher, E.-M., Dabiri, Z., & Hölbling, D. (2024). CopPhil: EO Service Development & Transfer - Capacity Development Plan. (CopPhil D11): Arellano, C. M., Streifeneder, V., Steinbacher, E.-M., Dabiri, Z., & Hölbling, D. (2024). CopPhil: EO Service Development & Transfer - Knowledge and Capacity Building Report.



